Granular Multidimensional Poverty Index Using Grid-Based Spatial Modeling: A Case Study of East Java, Indonesia
Main Article Content
Abstract
Capturing multidimensional poverty through conventional poverty statistics is challenging in view of their limited spatial resolution and focus on monetary indicators. In Indonesia, poverty measurement remains largely expenditure-based, potentially obscuring localized deprivations in education, health, and living standards. The objective of this present study is to address this limitation by developing a granular spatial mapping framework for the Multidimensional Poverty Index (MPI) in East Java Province. Employing the Alkire–Foster approach and Susenas 2023 data, the provincial MPI is estimated at 0.0479, and MPI values are spatially predicted at a 3 × 3 km grid resolution by integrating geospatial indicators of infrastructure accessibility, education and healthcare facilities, nighttime light intensity, and population density. The spatial models demonstrate strong predictive performance (R2 ≈ 0.97; AUC ≈ 0.98), revealing pronounced fine-scale variation in multidimensional poverty and identifying deprivation clusters that are not observable in administrative-level statistics. Areas characterized by geographic isolation and limited-service accessibility consistently exhibit elevated predicted MPI values. The findings of this study highlight the significance of high-resolution multidimensional poverty mapping in facilitating the development of more spatially targeted and evidence-based poverty reduction policies at the local level.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alkire, S. (2016). The process of developing multidimensional poverty measures [PowerPoint Sildes]. UNECE workshop on harmonisation of poverty statistics Geneva, 11 July 2016.
Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7-8), 476-487.
Alkire, S., & Santos, M. E. (2013). A multidimensional approach: Poverty measurement & beyond. Social Indicators Research, 112(2), 239–257. doi: https://doi.org/10.1007/s11205- 013-0257-3.
Alkire, S., Kanagaratnam, U., & Suppa, N. (2023). The global Multidimensional Poverty Index (MPI): 2023 revision and
robustness. Oxford Poverty and Human Development Initiative (OPHI) Working Paper, University of Oxford.
Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional Science, 89(1), 3-25.
Artha, D. R. P., & Dartanto, T. (2018). The Multidimensional Approach to Poverty Measurement in Indonesia: Measurements, Determinants and Its Policy Implications. Journal of Economic Cooperation and Development, 39(1), 23–52.
Bigman, D., & Fofack, H. (2000). Geographical targeting for poverty alleviation: Methodology and applications. The World Bank.
Blumenstock, J., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), 1073-1076.
Chambers, R. (1995). Poverty and livelihoods: Whose reality counts? Institute of Development Studies Discussion Paper No. 347, University of Sussex, Brighton.
Chen, X., Zhou, T., & Wang, D. (2022). The Impact of Multidimensional Health Levels on Rural Poverty: Evidence from Rural China. International Journal of Environmental Research and Public Health, 19(7), 4065. https://doi.org/10.3390/ijerph19074065
Chi, G., Fang, H., Chatterjee, S., & Blumenstock, J. E. (2022). Microestimates of wealth for all low-and middle-income countries. Proceedings of the National Academy of Sciences, 119(3), e2113658119.
Galih Pramono & Waris Marsisno, 2018. "Availability of Infrastructure for Poverty Reduction in Indonesia: Spatial Panel Data Analysis," Economics and Finance in Indonesia, Faculty of Economics and Business, University of Indonesia, vol. 64, pages 157-180, December.
Head, A., Manguin, M., Tran, N., & Blumenstock, J. E. (2017). Can human development be measured from space? Proceedings of the AAAI Conference on Artificial Intelligence, 31(1).
Hendarto, T. (2019). The disparity of economic development and social in coastal area of East Java. In Proceedings of the 1st Asian Conference on Humanities, Industry, and Technology for Society (ACHITS 2019), 30–31 July 2019, Surabaya, Indonesia. EAI. https://doi.org/10.4108/eai.30-7-2019.2287613
Ifa, Khoirul & Liyundira, Fetri & Indrianasari, Neny & Ana, Selvia. (2024). Dinamika Kemiskinan Di Pulau Madura: Faktor Ekonomi Dan Sosial. RELASI: JURNAL EKONOMI. 21. 225-244. 10.31967/relasi.v21i1.1239.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: With applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1
Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790-794.
Li, G., Chang, L., Liu, X., Su, S., Cai, Z., Huang, X., & Li, B. (2019). Monitoring the spatiotemporal dynamics of poor counties in China: Implications for global sustainable development goals. Journal of Cleaner Production, 227, 392–404. https://doi.org/10.1016/j.jclepro.2019.04.135
Molnar, C. (2020). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Christoph Molnar (self‑published).
Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research , 12, 2825-2830.
Putri, O. K., & Susilowati, M. H. D. (2018). Spatial pattern of tourist distribution based on physical and accessibility factors in Pacitan Regency, East Java, Indonesia. E3S Web of Conferences, 73, 03007. https://doi.org/10.1051/e3sconf/20187303007
Putri, S. R., Wijayanto, A. W., & Sakti, A. D. (2022). Developing relative spatial poverty index using integrated remote sensing and geospatial big data approach: A case study of East Java, Indonesia. ISPRS International Journal of Geo-Information, 11(5), 275. https://doi.org/10.3390/ijgi11050275
Putri, S. R., Wijayanto, A. W., & Pramana, S. (2023). Multi-source satellite imagery and point of interest data for poverty mapping in East Java, Indonesia: Machine learning and deep learning approaches. Remote Sensing Applications: Society and Environment, 29, 100889. https://doi.org/10.1016/j.rsase.2022.100889
Riniwati, H., Utami, T. N., Viantika, R., Viantika, R., Galisong, R., Novia Putri Anjani, & Viantika, R. (2023). The Key Factors in Increasing the Economic of the Coastal Village Community in Madura Island. HABITAT, 34(1), 105–118. https://doi.org/10.21776/ub.habitat.2023.034.1.10
Roberts, D. R., et al. (2017). Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 40(8), 913-929.
Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random Forest algorithm overview. Babylonian Journal of Machine Learning, 2024, 69–79. https://doi.org/10.58496/BJML/2024/007
Santos, M. E., & Villatoro, P. (2018). A multidimensional poverty index for Latin America. Review of Income and Wealth, 64(1), 52-82.
Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., & Bengtsson, L. (2017). Mapping poverty using mobile phone and satellite data. Journal of The Royal Society Interface, 14(127), 20160690.
Sumargo, B., & Simanjuntak, N. M. M. (2019). Deprivasi utama kemiskinan multidimensi antarprovinsi di Indonesia. Jurnal Ekonomi dan Pembangunan Indonesia, 19(2), Article 2. https://doi.org/10.21002/jepi.2019.10
United Nations Development Programme, & Oxford Poverty and Human Development Initiative. (2024). Global Multidimensional Poverty Index 2024: Poverty amid conflict. United Nations Development Programme & Oxford Poverty and Human Development Initiative. Retrieved July 20, 2024, from https://www.undp.org/sites/g/files/zskgke326/files/2024-10/2024_global_multidimensional_poverty_index.pdf
Wahed, M., Sishidiyati, S., & Winarno, A. (2022). Acceleration model for economic development in disadvantaged regions of East Java Province. BIRCI Journal: Humanities and Social Sciences, 5(1), 636–647. https://doi.org/10.33258/birci.v5i1.3904
Wibowo, A. T. S., Handoko, V. R., & Rochim, A. I. (2023). The Impact of Infrastructure Escalation on Services and Economic Growth in Southern East Java. Eduvest - Journal of Universal Studies, 3(6), 1169–1178. https://doi.org/10.59188/eduvest.v3i6.880
Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., & Burke, M. (2020). Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications, 11(1), 2583..
Zhao, X., Yu, B., Liu, Y., Chen, Z., Li, Q., Wang, C., & Wu, J. (2019). Estimation of poverty using random forest regression with multi-source data: A case study in Bangladesh. Remote Sensing, 11(4), 375.
Zhou, Q., Chen, N., & Lin, S. (2022). A Poverty Measurement Method Incorporating Spatial Correlation: A Case Study in Yangtze River Economic Belt, China. ISPRS International Journal of Geo-Information, 11(1), 50. https://doi.org/10.3390/ijgi11010050