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Abstract 

Capturing multidimensional poverty through conventional poverty statistics is challenging in view of their limited spatial resolution and focus 
on monetary indicators. In Indonesia, poverty measurement remains largely expenditure-based, potentially obscuring localized deprivations in 
education, health, and living standards. The objective of this present study is to address this limitation by developing a granular spatial mapping 
framework for the Multidimensional Poverty Index (MPI) in East Java Province. Employing the Alkire–Foster approach and Susenas 2023 data, 
the provincial MPI is estimated at 0.0479, and MPI values are spatially predicted at a 3 × 3 km grid resolution by integrating geospatial indicators 
of infrastructure accessibility, education and healthcare facilities, nighttime light intensity, and population density. The spatial models 
demonstrate strong predictive performance (R² ≈ 0.97; AUC ≈ 0.98), revealing pronounced fine-scale variation in multidimensional poverty and 
identifying deprivation clusters that are not observable in administrative-level statistics. Areas characterized by geographic isolation and limited-
service accessibility consistently exhibit elevated predicted MPI values. The findings of this study highlight the significance of high-resolution 
multidimensional poverty mapping in facilitating the development of more spatially targeted and evidence-based poverty reduction policies at 
the local level. 
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1. Introduction  

Poverty continues to represent a critical global challenge 

that necessitates a precise and policy-relevant measurement. 

Conventional poverty assessments, predominantly based on 

household income or expenditure surveys, demonstrate their 

persistent limitations in terms of high implementation costs, 

infrequent data collection, and coarse spatial resolution. These 

constraints then impede their capability to capture localized 

deprivation and to support targeted policy interventions, 

particularly in geographically diverse regions. In recent years, 

advances in machine learning (ML) and geospatial 

technologies have expanded the possibilities for poverty 

mapping through the integration of multi-source remote 

sensing and spatial data (Putri et al., 2022). Empirical studies 

demonstrate the efficacy of machine learning (ML) methods, 

including Random Forest, in revealing micro-geographical 

poverty patterns. In addition, nighttime light (NTL) data has 

emerged as a robust proxy for economic activity when 

combined with other spatial indicators (Li et al., 2019; Putri et 

al., 2023). 

Despite these technological developments, many 

developing countries, including Indonesia, continue to rely 

primarily on unidimensional poverty measures. Statistics 

Indonesia (BPS), for instance, by tradition defines poverty 

based on consumption expenditure thresholds. While this 

approach provides a general overview of economic deprivation, 

it fails to capture non-monetary dimensions of poverty such as 

access to education, healthcare, housing quality, and basic 

services, that constitute integral components of community 

welfare (Sumargo et al., 2019). Consequently, poverty is 

frequently underestimated in areas where income or 

expenditure levels may be sufficient, yet access to essential 

services remains limited, particularly in rural and 

geographically isolated areas.  

In response to these limitations, Chambers (1995) developed 

the multidimensional poverty framework integrating five 

interacting dimensions: material poverty, powerlessness, 

physical vulnerability, geographical isolation, and social 

vulnerability. This conceptual evolution is instrumental in the 

development of the Multidimensional Poverty Index (MPI) by 

Alkire and Foster (2011), a tool now widely adopted by various 

countries and international organizations. The MPI framework 

provides a more comprehensive assessment of poverty by 

incorporating multiple dimensions of deprivation. However, 

methodological challenges remain in operationalizing MPI 

within a spatially explicit framework. Traditional MPIs 

demonstrate limited scalability in capturing broad spatial 

disparities due to their dependence on census or household 
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survey data (Zhou et al., 2022). Conversely, spatial poverty 

indices such as the Relative Spatial Poverty Index (RSPI) 

emphasize geographical characteristics but frequently lack a 

robust multidimensional poverty conceptualization (Putri et al., 

2022). 

This divergence reveals a critical methodological gap in 

poverty research: spatial approaches frequently lack conceptual 

depth in representing multidimensional deprivation, while 

multidimensional poverty measures frequently lack sufficient 

spatial granularity to inform localized interventions. Existing 

studies that incorporate spatial variables into MPI frameworks 

typically treat geographic characteristics, such as elevation, 

precipitation, or nighttime light intensity as individual 

indicators within the index, rather than integrating spatial 

information as a structural component of the poverty modeling 

process (Zhou et al., 2022). 

East Java Province is an appropriate case study to address 

this gap due to its pronounced geographical and socio-

economic heterogeneity. The province is characterized by 

geographical features, including densely urbanized 

metropolitan areas, remote rural and island regions. This 

diversity result in substantial disparities in infrastructure 

availability, service accessibility, and development outcomes 

across various administrative levels (Putri et al., 2022). These 

characteristics highlight the necessity for poverty measurement 

approaches that can simultaneously capture multidimensional 

deprivation and spatial variation at a finer resolution than 

conventional administrative units.  

This study, building on the emphasis of geographical 

isolation as a key dimension of poverty (Chambers, 1995), 

proposes a spatially-based multidimensional poverty 

measurement approach integrating the Alkire–Foster MPI 

framework with machine learning and geospatial analysis. In 

contrast to previous studies that utilize spatial data merely as 

auxiliary indicators, this research treats spatial accessibility, 

infrastructure distribution, and geographic context as core 

predictive features for modeling and estimating MPI values at 

a granular grid level. By applying this approach to East Java, 

the study aims to generate high-resolution multidimensional 

poverty maps that reveal localized pockets of deprivation and 

provide stronger empirical support for spatially targeted and 

evidence-based poverty alleviation policies. 

2. Methodology 

This present study adopts a spatially explicit analytical 

framework to estimate and map multidimensional poverty at a 

granular scale. The methodology is comprised of two main 

components: (1) data collection and preparation, and (2) data 

analysis and modeling. This structure ensures a clear separation 

between data sources and analytical procedures, while 

maintaining a coherent workflow from MPI construction to 

grid-level spatial prediction. 

2.1. Study area 

East Java is one of 38 provinces in Indonesia with Surabaya 

as the capital province. This province consists of 38 

regencies/municipalities. The percentage of East Java in 

poverty in 2023 reached 10.35, or approximately 4.19 million 

people living in poverty (BPS-Statistics Indonesia, 2023). Fig. 

1 portrays the map of East Java as the case study, along with 

the distribution of official poverty data at the 

regency/municipality level in 2023.  

 

Fig. 1. East Java, Indonesia as the case study area and its poverty rate 

 

As illustrated in Fig. 1, poverty in East Java is unevenly 

distributed across space, with higher poverty rates concentrated 

in Madura Island, the northern coastal areas, and the eastern 

“Tapal Kuda” region. Whereas major urban centers including 

Surabaya, Malang, and Batu report substantially lower poverty 

rates. This spatial pattern highlights pronounced regional 

disparities that are shaped by differences in infrastructure 

availability, accessibility to services, and proximity to urban 

economic centers. 

2.2. Data collection and preparation 

The multiple data sources were integrated to capture both 

multidimensional deprivation and spatial context. Firstly, 

household-level socioeconomic data were obtained from the 

March 2023 National Socioeconomic Survey (Susenas), Core 
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Module, conducted by Statistics Indonesia (BPS). These data 

provide information on education, health, housing conditions, 

and access to basic services, utilized to construct the 

Multidimensional Poverty Index (MPI) following the Alkire–

Foster methodology. 

Secondly, spatial data on public facilities were collected 

from OpenStreetMap (OSM). These include the locations of 

education facilities, healthcare facilities, and basic 

infrastructure such as electricity supply points, water facilities, 

and fuel stations. Facility data were employed to represent 

accessibility to essential services across geographic space. 

Thirdly, nighttime light (NTL) data were sourced from the 

Visible Infrared Imaging Radiometer Suite (VIIRS) to capture 

spatial variation in economic activity. Concurrently, population 

density data were obtained from the WorldPop database to 

represent the spatial distribution of population. All spatial 

datasets were projected to a common coordinate reference 

system and harmonized to ensure spatial consistency.  

2.3. Multidimensional poverty index (MPI) construction 

The Global Multidimensional Poverty Index Report (2024) 

implicitly indicates that the UNDP and OPHI formulated the 

Multidimensional Poverty Index (MPI), encompassing three 

core dimensions: education, health and a decent standard of 

living (Alkire et al., 2023; Alkire, 2016; Alkire & Santos, 

2013). Table 1 presents the dimensions and indicators of MPI 

utilized in this study. The selection of indicators was based on 

the data availability, and the weights used exerted the same 

value for each indicator. 

 

Table 1. Dimensions and indicators used in MPI Measurements 

Dimensions Indicators (𝐼𝑖) Deprivation Threshold Weights (𝑤 𝑖) References 

Education (1/3) Mean Years Schooling Less than 9 years of schooling for individuals aged 15+ 1/9 UNDP, 2024 

 School Attendance Not attending school for children aged 5-17 1/9 UNDP, 2024 

 Literacy Unable to read and write for individuals aged 15+ 1/9 Sumargo, B et al., 2019 

Health (1/3) Birth Assistance Delivery not assisted by trained health personnel 1/9 Sumargo, B et al., 2019 

 Health Insurance Access Individuals without any form of health insurance 1/9 Artha, D. R. P., & 

Dartanto, T. (2018) 

 Healthcare Access Unable to access healthcare due to cost, distance, or 

quality issues 

1/9 Chen, X et.al., 2022 

Standard of Living 

(1/3) 

Electricity Access Households using non-PLN electricity or non-electric 

lighting 

1/18 UNDP, 2024 

 House Wall Materials Walls made of wood/planks, bamboo weaving, wood logs, 

bamboo, or other poor materials 

1/18 UNDP, 2024 

 House Floor Materials Floor made of wood/planks, bamboo, low quality 

wood/boards, soil and other materials 

1/18 UNDP, 2024 

 Cooking Fuel Households using traditional fuels such as wood, 

charcoal, kerosene, briquettes, or other traditional fuels 

1/18 UNDP, 2024 

 Improved Water Access Households using unimproved water sources such as 

unprotected well, unprotected spring, surface water, 

rainwater, or other poor sources  

1/18 UNDP, 2024 

 Assets Ownership Households not owning any of: motorcycle, TV, AC, 

refrigerator, or car 

1/18 UNDP, 2024 

An individual is identified as multidimensionally poor if his 

deprivation score (𝑐𝑖) is less than the poverty cutoff of 1/3 

(0.333). This threshold is designed to ensure that poverty 

identification requires substantial deprivation across multiple 

dimensions. 

 
 𝑐𝑖 = 𝑤1𝐼1 + 𝑤2𝐼2 + ⋯ + 𝑤𝑑𝐼𝑑 () 

where 𝐼𝑖 = 1 (if someone is deprived in indicator 𝑖), 𝐼𝑖 = 0 (if not 

deprived) and 𝑤𝑖 is the weight of indicator 𝑖 with 𝛴𝑖=1𝑤𝑖 = 1 

 𝐻 =  
𝑞

𝑛
 () 

 𝐴 =  
∑ 𝑐𝑖(𝑘)𝑛

𝑖=1

𝑞
 () 

 𝑀𝑃𝐼 =  𝐻 ×  𝐴 () 

H (multidimensional poverty headcount) is proportion of the 

number of multidimensional poor people to the total 

population; A (multidimensional poverty intensity) refers to the 

weighted average proportion of indicators in which poor people 

are deprived; q is the number of individuals categorized as poor 

multidimensionally, n is the total population, k is the amount of 

deprivation that a person must experience to be categorized as 

poor, and 𝑐𝑖(k) is the deprivation sensor score. 

2.4. Spatial feature engineering 

Spatial feature engineering was conducted to transform raw 
geospatial data into meaningful predictors for poverty 
estimation. For each grid cell, spatial features were derived to 
represent accessibility, infrastructure availability, and 
geographic context. The process involved the extraction of 
spatial features across multiple buffer zones to capture varying 
scales of spatial influence (Yeh et al., 2020). The accessibility 
features of the facility included counts and densities of 
education, healthcare, and infrastructure facilities within 
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multiple buffer distances, as well as distances to the nearest 
facility of each type.  

Urban accessibility was measured by the distances from 

each location to major urban centers in East Java, including 

Surabaya, Malang, Kediri, Jember, and Madiun, reflecting 

urban–rural gradients. These locations correspond to the 

officially designated urban service centers (PKN/PKW) in the 

East Java Provincial Spatial Plan (RTRW), as defined under 

Perda Jatim No. 10/2023. The socioeconomic spatial features 

included nighttime light intensity and population density. 

Furthermore, spatial lag variables were constructed using 

queen contiguity weights to account for neighborhood effects 

and spatial autocorrelation (Anselin, 2024), thereby capturing 

the influence of surrounding grid cells on local poverty 

outcomes. Comprehensive spatial feature set across multiple 

thematic categories is outlined in Table 2.

 

Table 2. Dimensions and indicators used in MPI Measurements 

 

Categories Features Buffer Zone Data Sources 

Geographic Context Raw coordinates – East Java Administrative Maps (Grid Centroid) 

 Normalized coordinates [0, 1] – Derived 

Infrastructure Accessibility Education facility count  5, 10, 15 km OpenStreetMap 

 Education facility density 5, 10, 15 km OpenStreetMap (Derived) 

 Distance to nearest education facility – OpenStreetMap (Calculated) 

 Healthcare facility count  5, 10, 15 km OpenStreetMap 

 Healthcare facility density 5, 10, 15 km OpenStreetMap (Derived) 

 Distance to nearest healthcare facility – OpenStreetMap (Calculated) 

 Infrastructure facility (electricity, water supply, 

gas station) count  

3, 5, 10 km OpenStreetMap 

 Infrastructure facility density 3, 5, 10 km OpenStreetMap (Derived) 

 Distance to nearest infrastructure  – OpenStreetMap (Calculated) 

Socioeconomic Indicators Nighttime light (NTL) intensity – NOAA-VIIRS 

 Population density – WorldPop Hub 

Urban Accessibility Distances to major cities (Surabaya, Malang, 

Kediri, Jember, Madiun) 

– East Java Administrative Maps (Calculated) 

 Spatial Lag of Infrastructure Count  5, 10, 15 km Queen Contiguity 

2.5. Machine learning modeling 

Machine learning techniques were applied to predict 

multidimensional poverty indicators at the grid level. Feature 

scaling was performed using ‘StandardScaler’ to normalize 

variables across different measurement units, ensuring optimal 

model performance (Pedregosa et al., 2011).  

Random Forest regression was employed to estimate 

continuous MPI values and multidimensional poverty 

headcount ratios due to its robustness to non-linear 

relationships (Salman et al., 2024) and its ability to handle 

complex interactions among spatial features. The pipeline 

employed a stratified train-test split (80:20) to ensure 

representative sampling across poverty levels while preserving 

spatial structure. 

For binary classification, the Logistic Regression model 

with balanced class weights was utilized for the purpose of 

classifying grid cells according to multidimensional poverty 

status. Regularization was applied to mitigate the risk of 

overfitting (James et al., 2021). The model training and 

evaluation processes were executed through an 80:20 train–test 

split, and model performance was assessed using standard 

regression and classification metrics, including the coefficient 

of determination (R²), error measures, accuracy, and the area 

under the ROC curve (AUC).  Hyperparameter tuning was 

performed to optimize regularization strength (C: 0.001-100), 

solver selection ('liblinear', 'lbfgs'), and maximum iterations 

(2000, 5000). Cross-validation procedures were utilized to 

ensure the generalizability of the model across spatial domains, 

with particular attention being paid to spatial autocorrelation 

effects that have the potential to inflate performance metrics 

(Roberts et al., 2017). 

 

2.6. Grid-level prediction and mapping 

The trained models were applied to all 3×3 km grid cells to 

generate spatially explicit predictions of multidimensional 

poverty indicators across East Java. Grid-level predictions 

facilitate the visualization of continuous poverty surfaces and 

the identification of localized pockets of deprivation that are 

not observable using administrative-level statistics. 

Predicted MPI values and poverty classifications were 

mapped to produce high-resolution spatial representations of 

multidimensional poverty distribution. These maps offer a 

practical instrument for identifying priority areas for policy 

intervention and for supporting more spatially targeted and 

evidence-based poverty alleviation strategies.
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Fig. 2. The research framework of this study. 

3. Results and Discussion 

3.1. Multidimensional Poverty Index  

The MPI analysis of East Java Province in 2023 provides a 

comprehensive picture of poverty that extends beyond 

traditional monetary measures, utilizing the Alkire-Foster 

methodology across 12 indicators spanning the domains of 

education, health, and living standards dimensions. The 

provincial MPI stands at 0.0479, with a headcount ratio of 

12.67% (approximately 5.13 million people out of 40.49 

million total population) and an intensity of 37.80%, indicating 

that multidimensionally poor individuals experience 

deprivation in more than one-third of the weighted indicators. 

Table 3. MPI results of East Java, 2023 

Poverty Measures 
MPI 

(Multidimensional) 

BPS  

(Monetary) 

Methodology 

Alkire-Foster 
approach with 12 

indicators across 3 
dimensions 

Expenditure-based 
poverty line 

Poverty Index 0.0479 – 

Headcount Ratio 12.67% 10.35% 

Poor Population 5.13 million people 4.19 million people 

Intensity of Poverty 37.80% – 

Education Dimension 17.10% – 

Health Dimension 53.00% – 

Living Standards 

Dimension 
29.90% – 

   

The close correspondence between the multidimensional 

headcount ratio (12.67%) and the official monetary poverty rate 

reported by BPS (10.35%) is consistent with previous findings 

that income-based poverty measures partially overlap with 

multidimensional deprivation (Alkire & Foster, 2011; Putri et 

al., 2022). However, the MPI framework has been 

demonstrated to reveal dimensions of deprivation that are not 

apparent in expenditure-based statistics, particularly in the 

domains of health and living standards. As demonstrated in 

other regional MPI studies, there is a lack of correlation 

between monetary sufficiency and adequate access to 

healthcare, housing quality, or basic services (Zhou et al., 

2022). This reinforces the argument that the measurement of 

multidimensional poverty provides complementary insights to 

official monetary poverty statistics, rather than competing with 

them.  

A breakdown by dimension reveals that the most significant 

contributor to overall deprivation comes from the health 

dimension, accounting for 53.00 percent of the total intensity. 

This finding suggests the presence of significant deficiencies in 

the accessibility of healthcare services. The dimension of living 

standards contributes 29.90 percent, reflecting challenges such 

as inadequate housing, lack of access to clean water, or limited 

access to basic utilities. Conversely, the education dimension 

contributes the least, at 17.10 percent, indicating relatively 

better outcomes in educational attainment when compared to 

the other dimensions. 

The analysis of MPI at the regency and municipality-levels 

in East Java reveals substantial spatial heterogeneity in 

multidimensional poverty patterns across the 38 administrative 

units. The MPI values range from 0.0108 in Blitar Municipality 

to 0.0961 in Sumenep Regency, representing an 8.9-fold 

variation that significantly exceeds the provincial average of 

0.0479. This pronounced spatial disparity indicates that 

multidimensional poverty is not uniformly distributed across 

the province, with distinct clustering patterns that reflect 

underlying socioeconomic and geographical factors. 
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Fig. 3. MPI map by regency/municipality in East Java, 2023

Rural regencies demonstrate consistently higher MPI 

values compared to urban municipalities, with the ten highest-

ranking areas being predominantly rural: Sumenep (0.0961), 

Bondowoso (0.0903), Probolinggo (0.0842), Sampang 

(0.0803), Situbondo (0.0752), Jember (0.0721), Bangkalan 

(0.0689), Madiun (0.0669), Ponorogo (0.0637), and Pamekasan 

(0.0620). Conversely, the eight lowest MPI values are recorded 

in urban areas, with Blitar Municipality (0.0108), Surabaya 

Municipality (0.0121), Mojokerto Municipality (0.0138), 

Gresik (0.0196), Kediri Municipality (0.0203), Malang 

Municipality (0.0227), Pasuruan Municipality (0.0233), and 

Sidoarjo (0.0236) all falling below the provincial average. 

The eastern regencies, particularly those in the Madura 

Island and Tapal Kuda region, demonstrate the highest 

concentration of multidimensional poverty, suggesting that 

geographical isolation, inadequate infrastructure development, 

and constrained access to urban economic opportunities may 

contribute to persistent multidimensional deprivation in these 

areas (Zhou, Q et al, 2022). 

The MPI patterns at the regency level observed in Fig. 3 are 

broadly consistent with earlier spatial poverty studies in East 

Java. These earlier studies identified Madura Island and the 

eastern Tapal Kuda region as structurally disadvantaged areas 

due to geographic isolation and limited infrastructure (Putri et 

al., 2022; Wahed et al., 2021).  

Nevertheless, while administrative-level MPI mapping 

effectively highlights inter-regional disparities, it remains 

insufficient for identifying intra-regional heterogeneity, 

particularly within large rural regencies. This limitation 

motivates the necessity for a finer spatial resolution to capture 

localized deprivation patterns that are obscured by 

administrative aggregation. 

 

3.2. Spatial Modeling for MPI Prediction 

The spatial feature engineering process established a 

comprehensive 3×3 km grid system (total 5,868 grid cells) 

covering East Java province, generating 48 distinct variables 

that capture multidimensional aspects of spatial accessibility 

and infrastructure distribution. The grid-based approach 

facilitated fine-scale spatial analysis by incorporating 

healthcare facility access (faskes_count, faskes_density), 

infrastructure availability (infra_count, infra_density), 

educational facility distribution (edu_count, edu_density), 

nighttime light intensity as a proxy for economic activity, and 

population density metrics. Furthermore, spatial lag features 

were computed to capture neighborhood effects, while 

distance-based variables measured geographic isolation from 

key services. This methodological framework successfully 

transformed point-based facility data into spatially continuous 

variables suitable for machine learning applications, with each 

grid cell containing standardized measurements of local and 

neighboring infrastructure accessibility.
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Fig. 4. Transformed data of spatial features used in this study 

A comprehensive correlation analysis revealed systematic 

relationships between infrastructure accessibility and MPI. The 

findings of the study demonstrated that healthcare facility count 

with spatial lag effects (15km radius) exhibited the strongest 

negative correlation with MPI (r = -0.398, p < 0.001). This was 

followed by infrastructure count with spatial lag effects (10km 

radius) (r = -0.386, p < 0.001), and educational facility count 

with spatial lag effects (15km radius) (r = -0.176, p < 0.001). 

While these correlations vary in magnitude, they represent 

highly significant associations across 5,868 grid cells, 

indicating consistent patterns of infrastructure-poverty 

relationships. Conversely, distance-based features exhibited 

positive correlation with poverty measures, thereby confirming 

the hypothesis that geographic isolation is associated with the 

increased probability of multidimensional deprivation.   

 

 

Fig. 5. Top 15 spatial features correlated with MPI (Pearson-Spearman correlation) 
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Fig. 6. Model performance analysis of Random Forest and Logistic Regression 

The engineered features were systematically prepared for 

model training through standardization and validation 

procedures. This multidimensional spatial feature space was 

found to be an effective means of capturing the complex 

geographic relationships influencing MPI distribution. It was 

further found to enable the implementation of both regression 

and classification approaches to predict multidimensional 

poverty indicators with high precision. 

Random Forest Regression 

The Random Forest regression models demonstrated 

exceptional predictive capability across both poverty 

indicators. For MPI prediction, the model achieved an R² of 

0.9669 on test data with remarkably low error metrics (MSE: 

0.0000122, MAE: 0.00138). This finding indicates that the 

spatial features account for approximately 97% of the variance 

in multidimensional poverty. Similarly, the multidimensional 

headcount poverty model attained an R² of 0.9660 (MSE: 

0.0000790, MAE: 0.00358), confirming robust performance 

across a range of poverty measures. The Random Forest 

algorithm’s approach effectively captured non-linear 

relationships and feature interactions inherent in spatial poverty 

patterns.

 

Fig. 7. 3×3 km grid mapping for granular MPI prediction and classification in East Java, 2023

Logistic Regression Classification 

The logistic regression model for binary MPI classification 

demonstrated outstanding discriminatory performance with an 

AUC of 0.9794 and accuracy of 93.29% on test data. The 

metrics indicate excellent model calibration and the ability to 

distinguish between poor and non-poor grid cells with high 

precision. The model has learned that geographic isolation 

(measured by distance to key urban centers) is one of the 

strongest predictors of MPI in East Java. This finding suggests 

that spatial accessibility and proximity to economic hubs are 

critical factors in determining poverty levels at the grid cell 

level. Cross validation procedures were utilized to confirm the 

model stability and generalizability across various spatial 

subsets of the data. 

 

3.3. Grid-based mapping results for granular MPI 

The grid-based MPI mapping at a 3×3 km resolution 

represents a significant methodological advancement over 

conventional administrative-level poverty analysis. While 
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previous studies have primarily reported poverty patterns at the 

level of the regency or the municipality, the grid-based 

approach reveals substantial micro-spatial heterogeneity within 

administrative units. This study demonstrates that areas 

officially classified as low-poverty regions may still contain 

concentrated pockets of multidimensional deprivation, thus 

highlighting the limitations of aggregated statistics for policy 

targeting. The mapping results identified specific geographic 

hotspots of multidimensional poverty grids, particularly in 

mountainous regions, coastal areas with limited infrastructure, 

and peripheral districts distant from major urban centers.  

a. Tapal Kuda Region (Eastern Horseshoe): The eastern 

border regions demonstrate elevated level of poverty, with 

Situbondo leading at 91.01% poor grids (MPI range: 0.036-

0.115, mean: 0.078), followed by Banyuwangi at 90.27% 

poor grids (MPI range: 0.039-0.115, mean: 0.079), and 

Bondowoso at 88.24% poor grids (MPI range: 0.026-0.111, 

mean: 0.076). This horseshoe-shaped pattern reflects 

persistent geographic isolation from major urban centers, 

where mountainous terrain and peripheral border positions 

limit economic integration with Java’s core urban corridor. 

These findings are consistent with those of previous studies 

indicating that economic growth in disadvantaged eastern 

regions of East Java lags behind surrounding areas (Wahed 

et al., 2021). However, the grid-based MPI mapping 

extends earlier analyses by revealing that multidimensional 

deprivation is spatially concentrated within specific 

mountainous and peripheral corridors rather than being 

uniformly distributed across regencies. This fine-scale 

spatial insight provides actionable information for targeting 

infrastructure development and social service expansion in 

areas where geographic isolation most strongly amplifies 

multidimensional poverty. 

b. Madura Island: All four Madura regencies exhibit high 

coverage of poor grids: Sumenep (94.97%), Sampang 

(87.08%), Pamekasan (78.57%), and Bangkalan (86.79%). 

This island-wide pattern demonstrates how geographic 

isolation compounds poverty, despite Bangkalan's 

proximity to Surabaya via the Suramadu Bridge. The 

consistently high MPI values (0.064-0.087) across Madura 

reflect limited infrastructure development and economic 

opportunities when compared to mainland Java. This 

phenomenon is particularly evident in coastal communities 

on Madura Island, where economic vulnerability is 

significantly determined by poor infrastructure, limited 

market access, and a lack of modern technology (Riniwati 

et al., 2023). The findings indicate that multidimensional 

poverty is not exclusively driven by island-wide isolation, 

rather, but is further influenced by local disparities in 

infrastructure accessibility and service provision. This level 

of spatial detail enables policymakers to differentiate 

between structurally disadvantaged coastal communities 

and relatively better-connected areas, thus supporting the 

development of more differentiated and effective poverty 

alleviation strategies within the island. 

c. Coastal Areas: Coastal regions in East Java demonstrate a 

heterogeneity of multidimensional poverty patterns. 

Northern coastal regencies such as Tuban (65.57%) and 

Lamongan (67.13%) demonstrate moderate poverty levels, 

benefiting from industrial development and stronger 

economic interconnectivity with Surabaya. In contrast, 

southern and eastern coastal areas, including Lumajang 

(85.97%) and Situbondo (91.01%), experience substantially 

higher poverty prevalence. These disparities indicate that 

coastal proximity alone does not guarantee improved 

welfare outcomes. As noted by Hendarto (2019), 

developmental trajectories in East Java’s coastal regions are 

shaped by factors such as infrastructure availability and 

historical economic integration rather than geographic 

position. The Pantura (northern coast) has benefited from 

enhanced connectivity to the Javanese economic corridor, 

while the Pansela (southern coast) exhibits lagging 

indicators due to inadequate infrastructure and limited 

integration. The grid-based MPI mapping reinforces this 

distinction by revealing that multidimensional poverty in 

coastal areas is more strongly associated with infrastructure 

quality and economic connectivity than with proximity to 

the coastline itself. This finding highlights the significance 

of fine-scale spatial analysis in informing differentiated 

coastal development strategies rather than uniform, 

location-based policy approaches.  

d. Mountainous Areas: Mountainous regions in the southern 

part of the regencies exhibit varied patterns. Pacitan 

(1.06%) exerts the lowest coverage of poor grids, while 

Trenggalek (49.46%) and Ponorogo (24.32%) demonstrate 

moderate levels. This variation suggests that the impact of 

mountainous terrain is dependent upon accessibility to 

urban markets and infrastructure development. In Pacitan, 

though predominantly characterized by highland terrain, the 

exceptionally low poverty coverage reflects the enhanced 

accessibility and the potential for tourism development near 

urban centers, as highlighted by Putri & Susilowati (2018). 

By contrast, Trenggalek and Ponorogo face recurrent road 

disruptions and landslide risk, which undermine access to 

markets and public services, locking in moderate poverty 

grids as shown in landslide susceptibility studies by 

Banuzaki et al. (2022). The grid-based MPI mapping 

highlights how localized accessibility constraints within 

mountainous regions translate into concentrated pockets of 

multidimensional deprivation, thereby underscoring the 

importance of integrating topographic risk and 

infrastructure resilience into spatial poverty analysis and 

regional planning. 

e. Urban Proximity Effects: Regencies surrounding major 

cities show clear distance decay effects. The regions near 

Surabaya (i.e. Sidoarjo: 46.99% and Gresik: 72.52%) have 

lower poverty in comparison to more distant regions. 

Malang's surroundings show moderate poverty (Malang: 

78.00%), while Kediri's vicinity demonstrates strong urban 

influence (Kediri: 49.38%, and Kota Kediri: 15.79%). The 

analysis of grid-level MPI captures these spatial gradients 

with greater precision than statistics at the administrative 

level. This demonstrates how proximity to urban centers 

can shape multidimensional welfare outcomes at a fine 

spatial scale. This finding reinforces the relevance of 
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spatially targeted development strategies that leverage 

urban–rural linkages while addressing localized 

accessibility gaps. 

 

The apparent discrepancy between the high proportion of 

poor grids identified in this study (67.43%) and the lower 

poverty rates reported by the conventional MPI (12.67%) and 

the official monetary measure (10.35%) is indicative of 

fundamental methodological differences rather than empirical 

inconsistency. The grid-based MPI classification is a 

comprehensive measure of multidimensional deprivation 

across education, health, and living standards, whereas 

monetary poverty measures are confined to income or 

expenditure thresholds. As a result, a grid cell may be classified 

as poor (MPI > 0.033) even when most of its residents are not 

income-poor. 

This distinction is particularly evident in rural areas where 

the presence of basic income sufficiency may coexist with 

limited access to quality education, healthcare, and 

infrastructure. By employing a 3×3 km spatial resolution, the 

proposed approach captures micro-level deprivation patterns 

that are obscured by administrative-level aggregation. 

Conventional poverty statistics are calculated by averaging 

conditions across entire regencies, thereby smoothing over 

localized pockets of deprivation. In contrast, the grid-based 

analysis reveals that significant multidimensional poverty can 

persist within regions that are officially classified as non-poor. 

 

Policy Implications 

The findings demonstrate that 3×3 km grid-based MPI 

mapping noticeably enhances policy targeting accuracy when 

compared to conventional administrative-level poverty 

statistics. The identification of localized pockets of 

multidimensional deprivation enables policymakers to design 

geographically targeted interventions that prioritize specific 

communities rather than uniformly allocating resources across 

entire regencies. 

In terms of infrastructure planning, the integration of MPI 

with spatial accessibility indicators facilitates the identification 

of areas where poor health and living standards coincide with 

limited access to facilities. This information can guide the 

placement of healthcare centers, educational facilities, and 

transportation infrastructure, particularly in rural, coastal, and 

island regions where service gaps are most pronounced. From 

a regional development perspective, the utilization of granular 

MPI mapping facilitates the implementation of differentiated 

development strategies that recognize spatial heterogeneity 

within administrative boundaries. This approach has been 

demonstrated to reduce the risk of policy mistargeting and 

enhance the effectiveness of poverty reduction programs by 

aligning interventions with local deprivation profiles. 

 

Limitations and Future Possible Directions 

The research on multidimensional poverty mapping in East 

Java faces several significant limitations to be considered when 

interpreting the results. The study's reliance on cross-sectional 

Susenas 2023 data provides only a snapshot of poverty at a 

single point in time, limiting analysis of poverty dynamics or 

trends. Furthermore, the dataset of 5,868 samples may not fully 

capture heterogeneity across all micro-geographic areas. 

The technical limitations of the system include potential 

overfitting as evidenced by the substantial difference between 

the training R² (0.994) and the test R² (0.967), dependency on 

spatial autocorrelation that may create prediction issues, and an 

adaptive threshold method (67.43% poverty rate) that may not 

accurately reflect local conditions in areas with different 

poverty distributions. Data quality constraints involve the 3x3 

km grid resolution potentially missing micro-level poverty 

pockets, dependency on current facility location data that may 

become outdated, and reliance on nighttime light data that may 

not capture informal economic activities or areas with irregular 

electricity access. 

It is recommended that future research in multidimensional 

poverty mapping should prioritize the integration of 

longitudinal datasets to capture temporal dynamics and poverty 

transitions. This can be attained by moving beyond the current 

limitations of cross-sectional studies through te utilization of 

spatio-temporal modeling frameworks that are able to track 

changes over time. The enhanced model validation approaches, 

including robust cross-validation techniques and Bayesian 

methodologies, are deemed essential to address overfitting 

concerns and enhance generalizability across different 

geographic contexts (Jean et al., 2016; Steele et al., 2017). The 

incorporation of disparate data sources, particularly high-

resolution satellite imagery, mobile phone data, and real-time 

environmental indicators, offers promising avenues for 

improving data quality and spatial resolution while addressing 

currency issues in facility mapping (Blumenstock et al., 2015; 

Chi et al., 2022). Methodological advances should focus on 

developing hierarchical modeling approaches that combine 

feature-based and image-based models, enabling multi-scale 

analysis from household to regional levels (Head et al., 2017; 

Yeh et al., 2020). To enhance interpretability and policy 

relevance, it is recommended that future studies should explore 

the potential of explainable AI techniques and conduct 

comparative validation studies that examine the relationship 

between multidimensional and monetary poverty measures 

across different contexts (Molnar, 2020; Zhao et al., 2019). 

4. Conclusions 

The spatial analysis of multidimensional poverty in East 

Java provides robust empirical support for the distance decay 

hypothesis, thereby demonstrating that geographic accessibility 

plays a critical role in shaping welfare outcomes. Remote and 

peripheral areas consistently exhibit higher MPI values, 

reflecting how geographic isolation compounds deprivation 

through limited access to essential services, infrastructure, and 

economic opportunities. Conversely, proximity to major urban 

centers such as Surabaya, Malang, and Kediri is associated with 

substantially lower multidimensional poverty, highlighting the 

significance of urban connectivity and spatial spillover effects. 

The utilization of a 3×3 km grid-based framework has been 

demonstrated to be particularly effective in capturing fine-scale 

spatial heterogeneity obscured by administrative-level poverty 

statistics. The present study demonstrates that geographic 

context is not merely a backdrop for poverty but an active 

determinant that structures access to human development 

opportunities. This is demonstrated by the revelation of 

localized pockets of multidimensional deprivation within 
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officially low-poverty regions. These findings contribute to the 

literature on spatial poverty by empirically linking 

multidimensional deprivation to spatial accessibility at a 

granular scale. 

Nevertheless, several limitations should be acknowledged. 

The reliance on cross-sectional Susenas 2023 data has 

restricted the analysis to a single time point, thereby preventing 

the examination of poverty dynamics and transitions over time. 

Furthermore, despite the machine learning models exhibiting 

robust predictive performance, the potential for overfitting and 

reliance on spatial autocorrelation necessitate careful 

interpretation of the findings. It is recommended that future 

research should focus on developing spatio-temporal poverty 

models that integrate longitudinal data to capture changes in 

multidimensional deprivation over time. The utilization of 

higher-resolution geospatial data and complementary data 

sources could further enhance spatial precision and robustness. 

The advancement of these directions will serve to strengthen 

the role of spatially explicit multidimensional poverty 

measurement as a practical tool for evidence-based policy 

design and targeted poverty alleviation strategies. 
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