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Abstract

Capturing multidimensional poverty through conventional poverty statistics is challenging in view of their limited spatial resolution and focus
on monetary indicators. In Indonesia, poverty measurement remains largely expenditure-based, potentially obscuring localized deprivations in
education, health, and living standards. The objective of this present study is to address this limitation by developing a granular spatial mapping
framework for the Multidimensional Poverty Index (MPI) in East Java Province. Employing the Alkire—Foster approach and Susenas 2023 data,
the provincial MPI is estimated at 0.0479, and MPI values are spatially predicted at a 3 x 3 km grid resolution by integrating geospatial indicators
of infrastructure accessibility, education and healthcare facilities, nighttime light intensity, and population density. The spatial models
demonstrate strong predictive performance (R? = 0.97; AUC = 0.98), revealing pronounced fine-scale variation in multidimensional poverty and
identifying deprivation clusters that are not observable in administrative-level statistics. Areas characterized by geographic isolation and limited-
service accessibility consistently exhibit elevated predicted MPI values. The findings of this study highlight the significance of high-resolution
multidimensional poverty mapping in facilitating the development of more spatially targeted and evidence-based poverty reduction policies at

the local level.
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1. Introduction

Poverty continues to represent a critical global challenge
that necessitates a precise and policy-relevant measurement.
Conventional poverty assessments, predominantly based on
household income or expenditure surveys, demonstrate their
persistent limitations in terms of high implementation costs,
infrequent data collection, and coarse spatial resolution. These
constraints then impede their capability to capture localized
deprivation and to support targeted policy interventions,
particularly in geographically diverse regions. In recent years,
advances in machine learning (ML) and geospatial
technologies have expanded the possibilities for poverty
mapping through the integration of multi-source remote
sensing and spatial data (Putri et al., 2022). Empirical studies
demonstrate the efficacy of machine learning (ML) methods,
including Random Forest, in revealing micro-geographical
poverty patterns. In addition, nighttime light (NTL) data has
emerged as a robust proxy for economic activity when
combined with other spatial indicators (Li et al., 2019; Putri et
al., 2023).

Despite  these technological developments, many
developing countries, including Indonesia, continue to rely
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primarily on unidimensional poverty measures. Statistics
Indonesia (BPS), for instance, by tradition defines poverty
based on consumption expenditure thresholds. While this
approach provides a general overview of economic deprivation,
it fails to capture non-monetary dimensions of poverty such as
access to education, healthcare, housing quality, and basic
services, that constitute integral components of community
welfare (Sumargo et al., 2019). Consequently, poverty is
frequently underestimated in areas where income or
expenditure levels may be sufficient, yet access to essential
services remains limited, particularly in rural and
geographically isolated areas.

In response to these limitations, Chambers (1995) developed
the multidimensional poverty framework integrating five
interacting dimensions: material poverty, powerlessness,
physical vulnerability, geographical isolation, and social
vulnerability. This conceptual evolution is instrumental in the
development of the Multidimensional Poverty Index (MPI) by
Alkire and Foster (2011), a tool now widely adopted by various
countries and international organizations. The MPI framework
provides a more comprehensive assessment of poverty by
incorporating multiple dimensions of deprivation. However,
methodological challenges remain in operationalizing MPI
within a spatially explicit framework. Traditional MPIs
demonstrate limited scalability in capturing broad spatial
disparities due to their dependence on census or household
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survey data (Zhou et al., 2022). Conversely, spatial poverty
indices such as the Relative Spatial Poverty Index (RSPI)
emphasize geographical characteristics but frequently lack a
robust multidimensional poverty conceptualization (Putri et al.,
2022).

This divergence reveals a critical methodological gap in
poverty research: spatial approaches frequently lack conceptual
depth in representing multidimensional deprivation, while
multidimensional poverty measures frequently lack sufficient
spatial granularity to inform localized interventions. Existing
studies that incorporate spatial variables into MPI frameworks
typically treat geographic characteristics, such as elevation,
precipitation, or nighttime light intensity as individual
indicators within the index, rather than integrating spatial
information as a structural component of the poverty modeling
process (Zhou et al., 2022).

East Java Province is an appropriate case study to address
this gap due to its pronounced geographical and socio-
economic heterogeneity. The province is characterized by
geographical  features, including densely urbanized
metropolitan areas, remote rural and island regions. This
diversity result in substantial disparities in infrastructure
availability, service accessibility, and development outcomes
across various administrative levels (Putri et al., 2022). These
characteristics highlight the necessity for poverty measurement
approaches that can simultaneously capture multidimensional
deprivation and spatial variation at a finer resolution than
conventional administrative units.

This study, building on the emphasis of geographical
isolation as a key dimension of poverty (Chambers, 1995),
proposes a spatially-based multidimensional poverty
measurement approach integrating the Alkire—Foster MPI

framework with machine learning and geospatial analysis. In
contrast to previous studies that utilize spatial data merely as
auxiliary indicators, this research treats spatial accessibility,
infrastructure distribution, and geographic context as core
predictive features for modeling and estimating MPI values at
a granular grid level. By applying this approach to East Java,
the study aims to generate high-resolution multidimensional
poverty maps that reveal localized pockets of deprivation and
provide stronger empirical support for spatially targeted and
evidence-based poverty alleviation policies.

2. Methodology

This present study adopts a spatially explicit analytical
framework to estimate and map multidimensional poverty at a
granular scale. The methodology is comprised of two main
components: (1) data collection and preparation, and (2) data
analysis and modeling. This structure ensures a clear separation
between data sources and analytical procedures, while
maintaining a coherent workflow from MPI construction to
grid-level spatial prediction.

2.1. Study area

East Java is one of 38 provinces in Indonesia with Surabaya
as the capital province. This province consists of 38
regencies/municipalities. The percentage of East Java in
poverty in 2023 reached 10.35, or approximately 4.19 million
people living in poverty (BPS-Statistics Indonesia, 2023). Fig.
1 portrays the map of East Java as the case study, along with
the distribution of official poverty data at the
regency/municipality level in 2023.
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Fig. 1. East Java, Indonesia as the case study area and its poverty rate

As illustrated in Fig. 1, poverty in East Java is unevenly
distributed across space, with higher poverty rates concentrated
in Madura Island, the northern coastal areas, and the eastern
“Tapal Kuda” region. Whereas major urban centers including
Surabaya, Malang, and Batu report substantially lower poverty
rates. This spatial pattern highlights pronounced regional
disparities that are shaped by differences in infrastructure
availability, accessibility to services, and proximity to urban

economic centers.
2.2. Data collection and preparation

The multiple data sources were integrated to capture both
multidimensional deprivation and spatial context. Firstly,
household-level socioeconomic data were obtained from the
March 2023 National Socioeconomic Survey (Susenas), Core
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Module, conducted by Statistics Indonesia (BPS). These data
provide information on education, health, housing conditions,
and access to basic services, utilized to construct the
Multidimensional Poverty Index (MPI) following the Alkire—
Foster methodology.

Secondly, spatial data on public facilities were collected
from OpenStreetMap (OSM). These include the locations of
education facilities, healthcare facilities, and basic
infrastructure such as electricity supply points, water facilities,
and fuel stations. Facility data were employed to represent
accessibility to essential services across geographic space.

Thirdly, nighttime light (NTL) data were sourced from the
Visible Infrared Imaging Radiometer Suite (VIIRS) to capture
spatial variation in economic activity. Concurrently, population
density data were obtained from the WorldPop database to

represent the spatial distribution of population. All spatial
datasets were projected to a common coordinate reference
system and harmonized to ensure spatial consistency.

2.3. Multidimensional poverty index (MPI) construction

The Global Multidimensional Poverty Index Report (2024)
implicitly indicates that the UNDP and OPHI formulated the
Multidimensional Poverty Index (MPI), encompassing three
core dimensions: education, health and a decent standard of
living (Alkire et al., 2023; Alkire, 2016; Alkire & Santos,
2013). Table 1 presents the dimensions and indicators of MPI
utilized in this study. The selection of indicators was based on
the data availability, and the weights used exerted the same
value for each indicator.

Table 1. Dimensions and indicators used in MPI Measurements

Dimensions Indicators (I:) Deprivation Threshold Weights (w:) References
Education (1/3) Mean Years Schooling Less than 9 years of schooling for individuals aged 15+ 1/9 UNDP, 2024
School Attendance Not attending school for children aged 5-17 1/9 UNDP, 2024
Literacy Unable to read and write for individuals aged 15+ 1/9 Sumargo, B et al., 2019
Health (1/3) Birth Assistance Delivery not assisted by trained health personnel 1/9 Sumargo, B et al., 2019
Health Insurance Access  Individuals without any form of health insurance 1/9 Artha, D.R.P., &
Dartanto, T. (2018)
Healthcare Access Unable to access healthcare due to cost, distance, or 1/9 Chen, X et.al., 2022
quality issues
Standard of Living Electricity Access Households using non-PLN electricity or non-electric 1/18 UNDP, 2024
(1/3) lighting
House Wall Materials Walls made of wood/planks, bamboo weaving, wood logs, 1/18 UNDP, 2024
bamboo, or other poor materials
House Floor Materials Floor made of wood/planks, bamboo, low quality 1/18 UNDP, 2024
wood/boards, soil and other materials
Cooking Fuel Households using traditional fuels such as wood, 1/18 UNDP, 2024
charcoal, kerosene, briquettes, or other traditional fuels
Improved Water Access ~ Households using unimproved water sources such as 1/18 UNDP, 2024
unprotected well, unprotected spring, surface water,
rainwater, or other poor sources
Assets Ownership Households not owning any of: motorcycle, TV, AC, 1/18 UNDP, 2024

refrigerator, or car

An individual is identified as multidimensionally poor if his
deprivation score (ci) is less than the poverty cutoff of 1/3
(0.333). This threshold is designed to ensure that poverty
identification requires substantial deprivation across multiple
dimensions.

ci=wili twyl, + -+ wala D

where I;=1 (if someone is deprived in indicator i), I; = 0 (if not
deprived) and w; is the weight of indicator i with Xi-ywi= 1

H=2 @)
A= —i=1qci(") 3)
MPI=H x A 4)

H (multidimensional poverty headcount) is proportion of the

number of multidimensional poor people to the total
population; 4 (multidimensional poverty intensity) refers to the
weighted average proportion of indicators in which poor people
are deprived; ¢ is the number of individuals categorized as poor
multidimensionally, # is the total population, kis the amount of
deprivation that a person must experience to be categorized as
poor, and ci(%) is the deprivation sensor score.

2.4. Spatial feature engineering

Spatial feature engineering was conducted to transform raw
geospatial data into meaningful predictors for poverty
estimation. For each grid cell, spatial features were derived to
represent accessibility, infrastructure availability, and
geographic context. The process involved the extraction of
spatial features across multiple buffer zones to capture varying
scales of spatial influence (Yeh et al., 2020). The accessibility
features of the facility included counts and densities of
education, healthcare, and infrastructure facilities within
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multiple buffer distances, as well as distances to the nearest
facility of each type.

Urban accessibility was measured by the distances from
each location to major urban centers in East Java, including
Surabaya, Malang, Kediri, Jember, and Madiun, reflecting
urban—rural gradients. These locations correspond to the
officially designated urban service centers (PKN/PKW) in the
East Java Provincial Spatial Plan (RTRW), as defined under

Perda Jatim No. 10/2023. The socioeconomic spatial features
included nighttime light intensity and population density.
Furthermore, spatial lag variables were constructed using
queen contiguity weights to account for neighborhood effects
and spatial autocorrelation (Anselin, 2024), thereby capturing
the influence of surrounding grid cells on local poverty
outcomes. Comprehensive spatial feature set across multiple
thematic categories is outlined in Table 2.

Table 2. Dimensions and indicators used in MPI Measurements

Categories Features Buffer Zone Data Sources

Geographic Context Raw coordinates - East Java Administrative Maps (Grid Centroid)
Normalized coordinates [0, 1] - Derived

Infrastructure Accessibility Education facility count 5,10, 15 km OpenStreetMap
Education facility density 5,10, 15 km OpenStreetMap (Derived)
Distance to nearest education facility - OpenStreetMap (Calculated)
Healthcare facility count 5, 10, 15 km OpenStreetMap
Healthcare facility density 5,10, 15 km OpenStreetMap (Derived)
Distance to nearest healthcare facility - OpenStreetMap (Calculated)
Infrastructure facility (electricity, water supply, 3,5,10 km OpenStreetMap
gas station) count
Infrastructure facility density 3,5,10 km OpenStreetMap (Derived)
Distance to nearest infrastructure - OpenStreetMap (Calculated)

Socioeconomic Indicators Nighttime light (NTL) intensity - NOAA-VIIRS
Population density - WorldPop Hub

Urban Accessibility Distances to major cities (Surabaya, Malang, - East Java Administrative Maps (Calculated)
Kediri, Jember, Madiun)
Spatial Lag of Infrastructure Count 5,10, 15 km Queen Contiguity

2.5. Machine learning modeling

Machine learning techniques were applied to predict
multidimensional poverty indicators at the grid level. Feature
scaling was performed using ‘StandardScaler’ to normalize
variables across different measurement units, ensuring optimal
model performance (Pedregosa et al., 2011).

Random Forest regression was employed to estimate
continuous MPI values and multidimensional poverty
headcount ratios due to its robustness to non-linear
relationships (Salman et al., 2024) and its ability to handle
complex interactions among spatial features. The pipeline
employed a stratified train-test split (80:20) to ensure
representative sampling across poverty levels while preserving
spatial structure.

For binary classification, the Logistic Regression model
with balanced class weights was utilized for the purpose of
classifying grid cells according to multidimensional poverty
status. Regularization was applied to mitigate the risk of
overfitting (James et al., 2021). The model training and
evaluation processes were executed through an 80:20 train—test
split, and model performance was assessed using standard
regression and classification metrics, including the coefficient
of determination (R?), error measures, accuracy, and the area

under the ROC curve (AUC). Hyperparameter tuning was
performed to optimize regularization strength (C: 0.001-100),
solver selection ('liblinear', 'lbfgs'), and maximum iterations
(2000, 5000). Cross-validation procedures were utilized to
ensure the generalizability of the model across spatial domains,
with particular attention being paid to spatial autocorrelation
effects that have the potential to inflate performance metrics
(Roberts et al., 2017).

2.6. Grid-level prediction and mapping

The trained models were applied to all 3x3 km grid cells to
generate spatially explicit predictions of multidimensional
poverty indicators across East Java. Grid-level predictions
facilitate the visualization of continuous poverty surfaces and
the identification of localized pockets of deprivation that are
not observable using administrative-level statistics.

Predicted MPI values and poverty classifications were
mapped to produce high-resolution spatial representations of
multidimensional poverty distribution. These maps offer a
practical instrument for identifying priority areas for policy
intervention and for supporting more spatially targeted and
evidence-based poverty alleviation strategies.
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Fig. 2. The research framework of this study.

3. Results and Discussion
3.1. Multidimensional Poverty Index

The MPI analysis of East Java Province in 2023 provides a
comprehensive picture of poverty that extends beyond
traditional monetary measures, utilizing the Alkire-Foster
methodology across 12 indicators spanning the domains of
education, health, and living standards dimensions. The
provincial MPI stands at 0.0479, with a headcount ratio of
12.67% (approximately 5.13 million people out of 40.49
million total population) and an intensity of 37.80%, indicating
that multidimensionally poor individuals experience
deprivation in more than one-third of the weighted indicators.

Table 3. MPI results of East Java, 2023

MPI
(Multidimensional)

BPS

P M
overty Measures (Monetary)

Alkire-Foster

Methodology approach with 12 Expenditure-based
indicators across 3 poverty line
dimensions
Poverty Index 0.0479 -
Headcount Ratio 12.67% 10.35%

Poor Population 5.13 million people

4.19 million people

Intensity of Poverty 37.80% _
Education Dimension 17.10% -
Health Dimension 53.00% -
Living Standards 29.90% B

Dimension

The close correspondence between the multidimensional
headcount ratio (12.67%) and the official monetary poverty rate

reported by BPS (10.35%) is consistent with previous findings
that income-based poverty measures partially overlap with
multidimensional deprivation (Alkire & Foster, 2011; Putri et
al., 2022). However, the MPI framework has been
demonstrated to reveal dimensions of deprivation that are not
apparent in expenditure-based statistics, particularly in the
domains of health and living standards. As demonstrated in
other regional MPI studies, there is a lack of correlation
between monetary sufficiency and adequate access to
healthcare, housing quality, or basic services (Zhou et al.,
2022). This reinforces the argument that the measurement of
multidimensional poverty provides complementary insights to
official monetary poverty statistics, rather than competing with
them.

A breakdown by dimension reveals that the most significant
contributor to overall deprivation comes from the health
dimension, accounting for 53.00 percent of the total intensity.
This finding suggests the presence of significant deficiencies in
the accessibility of healthcare services. The dimension of living
standards contributes 29.90 percent, reflecting challenges such
as inadequate housing, lack of access to clean water, or limited
access to basic utilities. Conversely, the education dimension
contributes the least, at 17.10 percent, indicating relatively
better outcomes in educational attainment when compared to
the other dimensions.

The analysis of MPI at the regency and municipality-levels
in East Java reveals substantial spatial heterogeneity in
multidimensional poverty patterns across the 38 administrative
units. The MPI values range from 0.0108 in Blitar Municipality
to 0.0961 in Sumenep Regency, representing an 8.9-fold
variation that significantly exceeds the provincial average of
0.0479. This pronounced spatial disparity indicates that
multidimensional poverty is not uniformly distributed across
the province, with distinct clustering patterns that reflect
underlying socioeconomic and geographical factors.
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Fig. 3. MPI map by regency/municipality in East Java, 2023

Rural regencies demonstrate consistently higher MPI
values compared to urban municipalities, with the ten highest-
ranking areas being predominantly rural: Sumenep (0.0961),
Bondowoso (0.0903), Probolinggo (0.0842), Sampang
(0.0803), Situbondo (0.0752), Jember (0.0721), Bangkalan
(0.0689), Madiun (0.0669), Ponorogo (0.0637), and Pamekasan
(0.0620). Conversely, the eight lowest MPI values are recorded
in urban areas, with Blitar Municipality (0.0108), Surabaya
Municipality (0.0121), Mojokerto Municipality (0.0138),
Gresik (0.0196), Kediri Municipality (0.0203), Malang
Municipality (0.0227), Pasuruan Municipality (0.0233), and
Sidoarjo (0.0236) all falling below the provincial average.

The eastern regencies, particularly those in the Madura
Island and Tapal Kuda region, demonstrate the highest
concentration of multidimensional poverty, suggesting that
geographical isolation, inadequate infrastructure development,
and constrained access to urban economic opportunities may
contribute to persistent multidimensional deprivation in these
areas (Zhou, Q et al, 2022).

The MPI patterns at the regency level observed in Fig. 3 are
broadly consistent with earlier spatial poverty studies in East
Java. These earlier studies identified Madura Island and the
eastern Tapal Kuda region as structurally disadvantaged areas
due to geographic isolation and limited infrastructure (Putri et
al., 2022; Wahed et al., 2021).

Nevertheless, while administrative-level MPI mapping
effectively highlights inter-regional disparities, it remains

insufficient for identifying intra-regional heterogeneity,
particularly within large rural regencies. This limitation
motivates the necessity for a finer spatial resolution to capture
localized deprivation patterns that are obscured by
administrative aggregation.

3.2. Spatial Modeling for MPI Prediction

The spatial feature engineering process established a
comprehensive 3x3 km grid system (total 5,868 grid cells)
covering East Java province, generating 48 distinct variables
that capture multidimensional aspects of spatial accessibility
and infrastructure distribution. The grid-based approach
facilitated fine-scale spatial analysis by incorporating
healthcare facility access (faskes count, faskes density),
infrastructure  availability  (infra_count, infra density),
educational facility distribution (edu count, edu density),
nighttime light intensity as a proxy for economic activity, and
population density metrics. Furthermore, spatial lag features
were computed to capture neighborhood -effects, while
distance-based variables measured geographic isolation from
key services. This methodological framework successfully
transformed point-based facility data into spatially continuous
variables suitable for machine learning applications, with each
grid cell containing standardized measurements of local and
neighboring infrastructure accessibility.
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Fig. 4. Transformed data of spatial features used in this study

A comprehensive correlation analysis revealed systematic
relationships between infrastructure accessibility and MPI. The
findings of the study demonstrated that healthcare facility count
with spatial lag effects (15km radius) exhibited the strongest
negative correlation with MPI (r =-0.398, p <0.001). This was
followed by infrastructure count with spatial lag effects (10km
radius) (r = -0.386, p < 0.001), and educational facility count
with spatial lag effects (15km radius) (r = -0.176, p < 0.001).

Top 15 Features Correlated with MPI
(Pearson Correlation

While these correlations vary in magnitude, they represent
highly significant associations across 5,868 grid -cells,
indicating consistent patterns of infrastructure-poverty
relationships. Conversely, distance-based features exhibited
positive correlation with poverty measures, thereby confirming
the hypothesis that geographic isolation is associated with the
increased probability of multidimensional deprivation.
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Januardi & Paramitasari / Communications in Humanities and Social Sciences 5(2) (2025) 66-77

|! " ’ !..l
. I!"! RETEIRE
T S T
: .ji"! . Nl
Ly T
p w
[ b
1 %
11 o
;hd“ ' :"E-?!If'
. 'HHI "i”;g;.
.;‘1' !_,'!‘
. ;'i' ¥
Ny i
v

Fig. 6. Model performance analysis of Random Forest and Logistic Regression
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The engineered features were systematically prepared for
model training through standardization and validation
procedures. This multidimensional spatial feature space was
found to be an effective means of capturing the complex
geographic relationships influencing MPI distribution. It was
further found to enable the implementation of both regression
and classification approaches to predict multidimensional
poverty indicators with high precision.

Random Forest Regression

The Random Forest regression models demonstrated
exceptional predictive capability across both poverty
indicators. For MPI prediction, the model achieved an R? of
0.9669 on test data with remarkably low error metrics (MSE:
0.0000122, MAE: 0.00138). This finding indicates that the
spatial features account for approximately 97% of the variance
in multidimensional poverty. Similarly, the multidimensional
headcount poverty model attained an R? of 0.9660 (MSE:
0.0000790, MAE: 0.00358), confirming robust performance
across a range of poverty measures. The Random Forest
algorithm’s approach effectively captured non-linear
relationships and feature interactions inherent in spatial poverty
patterns.
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Fig. 7. 3x3 km grid mapping for granular MPI prediction and classification in East Java, 2023

Logistic Regression Classification

The logistic regression model for binary MPI classification
demonstrated outstanding discriminatory performance with an
AUC of 0.9794 and accuracy of 93.29% on test data. The
metrics indicate excellent model calibration and the ability to
distinguish between poor and non-poor grid cells with high
precision. The model has learned that geographic isolation
(measured by distance to key urban centers) is one of the
strongest predictors of MPI in East Java. This finding suggests
that spatial accessibility and proximity to economic hubs are

critical factors in determining poverty levels at the grid cell
level. Cross validation procedures were utilized to confirm the
model stability and generalizability across various spatial
subsets of the data.

3.3. Grid-based mapping results for granular MPI
The grid-based MPI mapping at a 3x3 km resolution

represents a significant methodological advancement over
conventional administrative-level poverty analysis. While
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previous studies have primarily reported poverty patterns at the
level of the regency or the municipality, the grid-based
approach reveals substantial micro-spatial heterogeneity within
administrative units. This study demonstrates that areas
officially classified as low-poverty regions may still contain
concentrated pockets of multidimensional deprivation, thus
highlighting the limitations of aggregated statistics for policy
targeting. The mapping results identified specific geographic
hotspots of multidimensional poverty grids, particularly in
mountainous regions, coastal areas with limited infrastructure,
and peripheral districts distant from major urban centers.

a.

Tapal Kuda Region (Eastern Horseshoe): The eastern
border regions demonstrate elevated level of poverty, with
Situbondo leading at 91.01% poor grids (MPI range: 0.036-
0.115, mean: 0.078), followed by Banyuwangi at 90.27%
poor grids (MPI range: 0.039-0.115, mean: 0.079), and
Bondowoso at 88.24% poor grids (MPI range: 0.026-0.111,
mean: 0.076). This horseshoe-shaped pattern reflects
persistent geographic isolation from major urban centers,
where mountainous terrain and peripheral border positions
limit economic integration with Java’s core urban corridor.
These findings are consistent with those of previous studies
indicating that economic growth in disadvantaged eastern
regions of East Java lags behind surrounding areas (Wahed
et al, 2021). However, the grid-based MPI mapping
extends earlier analyses by revealing that multidimensional
deprivation is spatially concentrated within specific
mountainous and peripheral corridors rather than being
uniformly distributed across regencies. This fine-scale
spatial insight provides actionable information for targeting
infrastructure development and social service expansion in
areas where geographic isolation most strongly amplifies
multidimensional poverty.

Madura Island: All four Madura regencies exhibit high
coverage of poor grids: Sumenep (94.97%), Sampang
(87.08%), Pamekasan (78.57%), and Bangkalan (86.79%).
This island-wide pattern demonstrates how geographic
isolation compounds poverty, despite Bangkalan's
proximity to Surabaya via the Suramadu Bridge. The
consistently high MPI values (0.064-0.087) across Madura
reflect limited infrastructure development and economic
opportunities when compared to mainland Java. This
phenomenon is particularly evident in coastal communities
on Madura Island, where economic vulnerability is
significantly determined by poor infrastructure, limited
market access, and a lack of modern technology (Riniwati
et al., 2023). The findings indicate that multidimensional
poverty is not exclusively driven by island-wide isolation,
rather, but is further influenced by local disparities in
infrastructure accessibility and service provision. This level
of spatial detail enables policymakers to differentiate
between structurally disadvantaged coastal communities
and relatively better-connected areas, thus supporting the
development of more differentiated and effective poverty
alleviation strategies within the island.

Coastal Areas: Coastal regions in East Java demonstrate a
heterogeneity of multidimensional poverty patterns.

Northern coastal regencies such as Tuban (65.57%) and
Lamongan (67.13%) demonstrate moderate poverty levels,
benefiting from industrial development and stronger
economic interconnectivity with Surabaya. In contrast,
southern and eastern coastal areas, including Lumajang
(85.97%) and Situbondo (91.01%), experience substantially
higher poverty prevalence. These disparities indicate that
coastal proximity alone does not guarantee improved
welfare outcomes. As noted by Hendarto (2019),
developmental trajectories in East Java’s coastal regions are
shaped by factors such as infrastructure availability and
historical economic integration rather than geographic
position. The Pantura (northern coast) has benefited from
enhanced connectivity to the Javanese economic corridor,
while the Pansela (southern coast) exhibits lagging
indicators due to inadequate infrastructure and limited
integration. The grid-based MPI mapping reinforces this
distinction by revealing that multidimensional poverty in
coastal areas is more strongly associated with infrastructure
quality and economic connectivity than with proximity to
the coastline itself. This finding highlights the significance
of fine-scale spatial analysis in informing differentiated
coastal development strategies rather than uniform,
location-based policy approaches.

. Mountainous Areas: Mountainous regions in the southern

part of the regencies exhibit varied patterns. Pacitan
(1.06%) exerts the lowest coverage of poor grids, while
Trenggalek (49.46%) and Ponorogo (24.32%) demonstrate
moderate levels. This variation suggests that the impact of
mountainous terrain is dependent upon accessibility to
urban markets and infrastructure development. In Pacitan,
though predominantly characterized by highland terrain, the
exceptionally low poverty coverage reflects the enhanced
accessibility and the potential for tourism development near
urban centers, as highlighted by Putri & Susilowati (2018).
By contrast, Trenggalek and Ponorogo face recurrent road
disruptions and landslide risk, which undermine access to
markets and public services, locking in moderate poverty
grids as shown in landslide susceptibility studies by
Banuzaki et al. (2022). The grid-based MPI mapping
highlights how localized accessibility constraints within
mountainous regions translate into concentrated pockets of
multidimensional deprivation, thereby underscoring the
importance of integrating topographic risk and
infrastructure resilience into spatial poverty analysis and
regional planning.

. Urban Proximity Effects: Regencies surrounding major

cities show clear distance decay effects. The regions near
Surabaya (i.e. Sidoarjo: 46.99% and Gresik: 72.52%) have
lower poverty in comparison to more distant regions.
Malang's surroundings show moderate poverty (Malang:
78.00%), while Kediri's vicinity demonstrates strong urban
influence (Kediri: 49.38%, and Kota Kediri: 15.79%). The
analysis of grid-level MPI captures these spatial gradients
with greater precision than statistics at the administrative
level. This demonstrates how proximity to urban centers
can shape multidimensional welfare outcomes at a fine
spatial scale. This finding reinforces the relevance of
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spatially targeted development strategies that leverage
urban—rural  linkages while addressing localized
accessibility gaps.

The apparent discrepancy between the high proportion of
poor grids identified in this study (67.43%) and the lower
poverty rates reported by the conventional MPI (12.67%) and
the official monetary measure (10.35%) is indicative of
fundamental methodological differences rather than empirical
inconsistency. The grid-based MPI classification is a
comprehensive measure of multidimensional deprivation
across education, health, and living standards, whereas
monetary poverty measures are confined to income or
expenditure thresholds. As a result, a grid cell may be classified
as poor (MPI > 0.033) even when most of its residents are not
income-poor.

This distinction is particularly evident in rural areas where
the presence of basic income sufficiency may coexist with
limited access to quality education, healthcare, and
infrastructure. By employing a 3x3 km spatial resolution, the
proposed approach captures micro-level deprivation patterns
that are obscured by administrative-level aggregation.
Conventional poverty statistics are calculated by averaging
conditions across entire regencies, thereby smoothing over
localized pockets of deprivation. In contrast, the grid-based
analysis reveals that significant multidimensional poverty can
persist within regions that are officially classified as non-poor.

Policy Implications

The findings demonstrate that 3x3 km grid-based MPI
mapping noticeably enhances policy targeting accuracy when
compared to conventional administrative-level poverty
statistics. The identification of localized pockets of
multidimensional deprivation enables policymakers to design
geographically targeted interventions that prioritize specific
communities rather than uniformly allocating resources across
entire regencies.

In terms of infrastructure planning, the integration of MPI
with spatial accessibility indicators facilitates the identification
of areas where poor health and living standards coincide with
limited access to facilities. This information can guide the
placement of healthcare centers, educational facilities, and
transportation infrastructure, particularly in rural, coastal, and
island regions where service gaps are most pronounced. From
a regional development perspective, the utilization of granular
MPI mapping facilitates the implementation of differentiated
development strategies that recognize spatial heterogeneity
within administrative boundaries. This approach has been
demonstrated to reduce the risk of policy mistargeting and
enhance the effectiveness of poverty reduction programs by
aligning interventions with local deprivation profiles.

Limitations and Future Possible Directions

The research on multidimensional poverty mapping in East
Java faces several significant limitations to be considered when
interpreting the results. The study's reliance on cross-sectional
Susenas 2023 data provides only a snapshot of poverty at a
single point in time, limiting analysis of poverty dynamics or
trends. Furthermore, the dataset of 5,868 samples may not fully
capture heterogeneity across all micro-geographic areas.

The technical limitations of the system include potential
overfitting as evidenced by the substantial difference between
the training R? (0.994) and the test R? (0.967), dependency on
spatial autocorrelation that may create prediction issues, and an
adaptive threshold method (67.43% poverty rate) that may not
accurately reflect local conditions in areas with different
poverty distributions. Data quality constraints involve the 3x3
km grid resolution potentially missing micro-level poverty
pockets, dependency on current facility location data that may
become outdated, and reliance on nighttime light data that may
not capture informal economic activities or areas with irregular
electricity access.

It is recommended that future research in multidimensional
poverty mapping should prioritize the integration of
longitudinal datasets to capture temporal dynamics and poverty
transitions. This can be attained by moving beyond the current
limitations of cross-sectional studies through te utilization of
spatio-temporal modeling frameworks that are able to track
changes over time. The enhanced model validation approaches,
including robust cross-validation techniques and Bayesian
methodologies, are deemed essential to address overfitting
concerns and enhance generalizability across different
geographic contexts (Jean et al., 2016; Steele et al., 2017). The
incorporation of disparate data sources, particularly high-
resolution satellite imagery, mobile phone data, and real-time
environmental indicators, offers promising avenues for
improving data quality and spatial resolution while addressing
currency issues in facility mapping (Blumenstock et al., 2015;
Chi et al., 2022). Methodological advances should focus on
developing hierarchical modeling approaches that combine
feature-based and image-based models, enabling multi-scale
analysis from household to regional levels (Head et al., 2017;
Yeh et al.,, 2020). To enhance interpretability and policy
relevance, it is recommended that future studies should explore
the potential of explainable AI techniques and conduct
comparative validation studies that examine the relationship
between multidimensional and monetary poverty measures
across different contexts (Molnar, 2020; Zhao et al., 2019).

4. Conclusions

The spatial analysis of multidimensional poverty in East
Java provides robust empirical support for the distance decay
hypothesis, thereby demonstrating that geographic accessibility
plays a critical role in shaping welfare outcomes. Remote and
peripheral areas consistently exhibit higher MPI values,
reflecting how geographic isolation compounds deprivation
through limited access to essential services, infrastructure, and
economic opportunities. Conversely, proximity to major urban
centers such as Surabaya, Malang, and Kediri is associated with
substantially lower multidimensional poverty, highlighting the
significance of urban connectivity and spatial spillover effects.

The utilization of a 3x3 km grid-based framework has been
demonstrated to be particularly effective in capturing fine-scale
spatial heterogeneity obscured by administrative-level poverty
statistics. The present study demonstrates that geographic
context is not merely a backdrop for poverty but an active
determinant that structures access to human development
opportunities. This is demonstrated by the revelation of
localized pockets of multidimensional deprivation within
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officially low-poverty regions. These findings contribute to the
literature on spatial poverty by empirically linking
multidimensional deprivation to spatial accessibility at a
granular scale.

Nevertheless, several limitations should be acknowledged.
The reliance on cross-sectional Susenas 2023 data has
restricted the analysis to a single time point, thereby preventing
the examination of poverty dynamics and transitions over time.
Furthermore, despite the machine learning models exhibiting
robust predictive performance, the potential for overfitting and
reliance on spatial autocorrelation necessitate careful
interpretation of the findings. It is recommended that future
research should focus on developing spatio-temporal poverty
models that integrate longitudinal data to capture changes in
multidimensional deprivation over time. The utilization of
higher-resolution geospatial data and complementary data
sources could further enhance spatial precision and robustness.
The advancement of these directions will serve to strengthen
the role of spatially explicit multidimensional poverty
measurement as a practical tool for evidence-based policy
design and targeted poverty alleviation strategies.

References

Alkire, S. (2016). The process of developing multidimensional poverty
slides]. UNECE Workshop on

Harmonisation of Poverty Statistics, Geneva, Switzerland.

measures  [PowerPoint

Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty
measurement. Journal of Public Economics, 95(7-8), 476-487.
https://doi.org/10.1016/j.jpubeco.2010.11.006

Alkire, S., & Santos, M. E. (2013). A multidimensional approach: Poverty
measurement and beyond. Social Indicators Research, 112(2), 239—
257. https://doi.org/10.1007/s11205-013-0257-3

Alkire, S., Kanagaratnam, U., & Suppa, N. (2023). The global
Multidimensional Poverty Index (MPI): 2023 revision and
robustness. Oxford Poverty and Human Development Initiative
(OPHI) Working Paper, University of Oxford.

Anselin, L. (2024). Contiguity-based spatial weights. In L. Anselin, 4n
introduction to spatial data science with GeoDa (pp. 179-202).
CRC Press. https://doi.org/10.1201/9781003274919-10

Artha, D. R. P., & Dartanto, T. (2018). The multidimensional approach to
poverty measurement in Indonesia: Measurements, determinants,
and policy implications. Journal of Economic Cooperation and
Development, 39(1), 23-52.
Bigman, D., & Fofack, H. (2000). Geographical targeting for poverty
alleviation: Methodology and applications. World Bank.
Blumenstock, J., Cadamuro, G., & On, R. (2015). Predicting poverty and
wealth from mobile phone metadata. Science, 350(6264), 1073—
1076. https://doi.org/10.1126/science.aac4420

Chambers, R. (1995). Poverty and livelihoods: Whose reality counts? Institute
of Development Studies Discussion Paper No. 347, University of
Sussex, Brighton.

Chen, X., Zhou, T., & Wang, D. (2022). The impact of multidimensional health
levels on rural poverty: Evidence from rural China. International
Journal of Environmental Research and Public Health, 19(7), 4065.
https://doi.org/10.3390/ijerph 19074065

Chi, G., Fang, H., Chatterjee, S., & Blumenstock, J. E. (2022). Microestimates
of wealth for all low- and middle-income countries. Proceedings of
the National Academy of Sciences, 119(3), e2113658119.

https://doi.org/10.1073/pnas.2113658119

Galih Pramono, & Marsisno, W. (2018). Availability of infrastructure for
poverty reduction in Indonesia: Spatial panel data analysis.
Economics and Finance in Indonesia, 64, 157-180.

Head, A., Manguin, M., Tran, N., & Blumenstock, J. E. (2017). Can human
development be measured from space? Proceedings of the AAAI
Conference on Artificial Intelligence, 31(1).

Hendarto, T. (2019). The disparity of economic development and social
conditions in coastal areas of East Java. In Proceedings of the st
Asian Conference on Humanities, Industry, and Technology for
Society (ACHITS 2019). EAIL https://doi.org/10.4108/eai.30-7-
2019.2287613

Ifa, K., Liyundira, F., Indrianasari, N., & Ana, S. (2024). Dinamika kemiskinan
di Pulau Madura: Faktor ekonomi dan sosial. Relasi: Jurnal
Ekonomi, 21, 225-244. https://doi.org/10.31967/relasi.v21i1.1239

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). 4n introduction to
statistical learning: With applications in R (2nd ed.). Springer.
https://doi.org/10.1007/978-1-0716-1418-1

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016).
Combining satellite imagery and machine learning to predict
poverty. Science, 353(6301), 790-794.
https://doi.org/10.1126/science.aaf7894

Li, G., Chang, L., Liu, X., Su, S., Cai, Z., Huang, X., & Li, B. (2019).
Monitoring the spatiotemporal dynamics of poor counties in China:
Implications for global sustainable development goals. Journal of

Production, 227, 392-404.
https://doi.org/10.1016/j.jclepro.2019.04.135

Molnar, C. (2020). Interpretable machine learning: A guide for making black

Self-published.

Cleaner

box models explainable.
https://christophm.github.io/interpretable-ml-book/

Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12, 2825-2830.

Putri, O. K., & Susilowati, M. H. D. (2018). Spatial pattern of tourist
distribution based on physical and accessibility factors in Pacitan
Regency, East Java, Indonesia. E3S Web of Conferences, 73, 03007.
https://doi.org/10.1051/e3sconf/20187303007

Putri, S. R., Wijayanto, A. W., & Sakti, A. D. (2022). Developing a relative
spatial poverty index using integrated remote sensing and geospatial
big data: A case study of East Java, Indonesia. ISPRS International
Journal of Geo-Information, 11(5), 275.
https://doi.org/10.3390/ijgi11050275

Putri, S. R., Wijayanto, A. W., & Pramana, S. (2023). Multi-source satellite
imagery and point-of-interest data for poverty mapping in East Java,
Indonesia. Remote Sensing Applications: Society and Environment,
29, 100889. https://doi.org/10.1016/j.rsase.2022.100889

Riniwati, H., Utami, T. N., Galisong, R., & Anjani, N. P. (2023). Key factors
in increasing the economic performance of coastal village
communities in Madura Island. Habitat, 34(1), 105-118.
https://doi.org/10.21776/ub.habitat.2023.034.1.10

Roberts, D. R, et al. (2017). Cross-validation strategies for data with temporal,
spatial, hierarchical, or phylogenetic structure. Ecography, 40(8),
913-929. https://doi.org/10.1111/ecog.02881

Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random Forest algorithm
overview. Babylonian Journal of Machine Learning, 2024, 69-79.
https://doi.org/10.58496/BIML/2024/007

Santos, M. E., & Villatoro, P. (2018). A multidimensional poverty index for
Latin America. Review of Income and Wealth, 64(1), 52-82.
https://doi.org/10.1111/roiw.12275

Steele, J. E., et al. (2017). Mapping poverty using mobile phone and satellite
data. Journal of the Royal Society Interface, 14(127), 20160690.
https://doi.org/10.1098/rsif.2016.0690


https://doi.org/10.1016/j.jpubeco.2010.11.006
https://doi.org/10.1007/s11205-013-0257-3
https://doi.org/10.1201/9781003274919-10
https://doi.org/10.1126/science.aac4420
https://doi.org/10.3390/ijerph19074065
https://doi.org/10.1073/pnas.2113658119
https://doi.org/10.4108/eai.30-7-2019.2287613
https://doi.org/10.4108/eai.30-7-2019.2287613
https://doi.org/10.31967/relasi.v21i1.1239
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1126/science.aaf7894
https://doi.org/10.1016/j.jclepro.2019.04.135
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1051/e3sconf/20187303007
https://doi.org/10.3390/ijgi11050275
https://doi.org/10.1016/j.rsase.2022.100889
https://doi.org/10.21776/ub.habitat.2023.034.1.10
https://doi.org/10.1111/ecog.02881
https://doi.org/10.58496/BJML/2024/007
https://doi.org/10.1111/roiw.12275
https://doi.org/10.1098/rsif.2016.0690

Januardi & Paramitasari / Communications in Humanities and Social Sciences 5(2) (2025) 66-77 77

Sumargo, B., & Simanjuntak, N. M. M. (2019). Deprivasi utama kemiskinan
multidimensi antarprovinsi di Indonesia. Jurnal Ekonomi dan
Pembangunan Indonesia, 19(2).
https://doi.org/10.21002/jepi.2019.10

United Nations Development Programme, & Oxford Poverty and Human
Development Initiative. (2024). Global Multidimensional Poverty
Index 2024: UNDP & OPHL
https://www.undp.org/publications/global-multidimensional-
poverty-index-2024

Wahed, M., Sishidiyati, S., & Winarno, A. (2022). Acceleration model for
economic development in disadvantaged regions of East Java
Province. BIRCI Journal: Humanities and Social Sciences, 5(1),
636—647. https://doi.org/10.33258/birci.v511.3904

Wibowo, A. T. S., Handoko, V. R., & Rochim, A. I. (2023). The impact of

Poverty amid  conflict.

infrastructure escalation on services and economic growth in
southern East Java. Eduvest — Journal of Universal Studies, 3(6),
1169-1178. https://doi.org/10.59188/eduvest.v3i6.880

Yeh, C., et al. (2020). Using publicly available satellite imagery and deep
learning to understand economic well-being in Africa. Nature
Communications, 11, 2583. https://doi.org/10.1038/s41467-020-
16185-w

Zhao, X., et al. (2019). Estimation of poverty using random forest regression
with multi-source data: A case study in Bangladesh. Remote
Sensing, 11(4), 375. https://doi.org/10.3390/rs11040375

Zhou, Q., Chen, N., & Lin, S. (2022). A poverty measurement method
incorporating spatial correlation: A case study in the Yangtze River
Economic Belt, China. ISPRS International Journal of Geo-
Information, 11(1), 50. https://doi.org/10.3390/ijgil 1010050


https://doi.org/10.21002/jepi.2019.10
https://www.undp.org/publications/global-multidimensional-poverty-index-2024
https://www.undp.org/publications/global-multidimensional-poverty-index-2024
https://doi.org/10.33258/birci.v5i1.3904
https://doi.org/10.59188/eduvest.v3i6.880
https://doi.org/10.1038/s41467-020-16185-w
https://doi.org/10.1038/s41467-020-16185-w
https://doi.org/10.3390/rs11040375
https://doi.org/10.3390/ijgi11010050

